AP CALCULUS AB Dr. Paul L. Bailey Homework 0317 Monday, March 17, 2025 Name:

Due Tuesday, March 18, 2025.

Problem 1 (Thomas Problem $\S8.1 \ \# 5$). Integrate (substitution)

$$\int_0^1 \frac{16x}{8x^2 + 2} \, dx.$$

Problem 2 (Thomas Problem §8.1 # 33). Integrate (substitution)

$$\int \frac{dx}{e^x + e^{-x}}.$$

Problem 3 (Thomas Problem §8.1 # 37). Integrate (complete the square)

$$\int_{1}^{2} \frac{8 \, dx}{x^2 - 2x + 2}.$$

Problem 4 (Thomas Problem \$8.1 # 43). Integrate (trig id)

$$\int (\sec x + \cot x)^2 \, dx.$$

Problem 5 (Thomas Problem §8.1 # 51). Integrate (improper fractions)

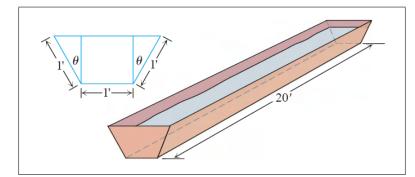
$$\int \frac{4t^3 - t^2 + 16t}{t^2 + 4} \, dt.$$

Problem 6 (Thomas Problem §8.1 # 57). Integrate (jail trick)

$$\int \frac{1}{1+\sin x} \, dx.$$

Problem 7 (Thomas Problem \$8.1 # 65). Integrate (eliminating radicals)

$$\int_{\pi/2}^{\pi} \sqrt{1 + \cos(2t)} \, dt.$$


Problem 8. The *change of base* formula for logarithms is $\log_b x = \frac{\log_a x}{\log_a b}$. Use this to compute $\frac{d}{dx} \log_{10} x$.

Problem 9. Let $f : \mathbb{R} \to \mathbb{R}$ be twice differentiable such that

$$f'(x) = x^4 + 4x^3 - 8x^2 - 48x + 7.$$

Find the points of inflection of f.

Problem 10 (Thomas Problem §4.5 # 24). The trough in the figure is to be made to the dimensions shown. Only the angle θ can be varied.

What value of θ will maximize the trough's volume?